The cancer cells or other cells tumors recruit to their microenvironment “reach over and hit the snooze button on the T cell,” Pierce said. “The T cell sits there asleep — like sleeping beauty.”
Pembrolizumab and other checkpoint inhibitors in its class work by blocking the T cells’ molecular snooze button, “then they wake up and start killing the tumor,” Pierce said. Before joining the Hutch, Pierce worked at Merck, the pharmaceutical company that developed pembrolizumab, as part of a biomarker-development team, and he led the early efforts to test the drug in the rare skin cancer Merkel cell carcinoma and in a type of lymphoma.
But the drugs don’t work for everyone, Pierce said. Even in disease types where some patients are seeing dramatic responses — like lung cancer and Merkel cell carcinoma — tumors in many or even most patients treated with checkpoint inhibitors do not shrink.
Which patients will benefit from immunotherapy?
For example, in non-small cell lung cancer, by far the most common type of lung cancer, only 20 percent of patients respond to existing checkpoint inhibitors, said lung cancer researcher Dr. Julia Kargl. But researchers don’t fully understand what separates those patients from the 80 percent who don’t benefit.
Kargl, a former Fred Hutch postdoctoral fellow who recently established her own lab at the Medical University of Graz in Austria, wanted to help answer that question. She and her colleagues in Dr. McGarry Houghton’s laboratory at the Hutch had reason to believe the types of immune cells in the tumor microenvironment could be part of the reason.
Time is of the essence for better understanding the cellular makeup of solid tumors, Kargl said. Besides the handful of checkpoint inhibitors already on the market, there are many more checkpoint inhibitors and other related therapies in development in labs and in clinical trials around the world. As more and more new cancer treatments come on the scene, somebody will need to figure out which patients are most likely to respond to which drugs.
“We are hoping that if we know which immune cells are present in the tumor, we could better identify patients that can benefit from immunotherapy,” Kargl said. “We will need good criteria to select which drugs or which drug combination is beneficial for patients.”
Cancer islands in a sea of cells
In a study published earlier this year in the journal Nature Communications, Kargl, Houghton and their colleagues did a deep dive into the immune cells present in biopsies taken from 73 patients with non-small cell lung cancer. The team looked at 40 different types of immune cells in each of those samples — and from all that data, a few highlights stood out. For one, these tumors contained a lot of noncancerous cells, Kargl said. More than 65 percent of the “tumor” sample was actually made up of immune cells.