“Tumor microenvironment issues come hand-in-hand with working on solid tumors,” said Anderson, who is one of 10 recipients of this year’s AACR Women in Cancer Research Scholar Awards, a travel award given to female early-career cancer researchers presenting at the meeting.
She and her colleagues have identified proteins overproduced by ovarian cancer cells, known as WT1 and mesothelin, and have found that T cells engineered to specifically recognize these proteins can kill both human and mouse ovarian cancer cells in the lab. They’ve also found that the T cells significantly extend survival in a mouse model of the cancer, but there’s a ways to go before this therapy is ready for clinical trials in humans, Anderson said.
In her presentation, Anderson outlined three types of tumor microenvironment roadblocks to an effective ovarian cancer T-cell therapy — and how the research team is working to overcome each. They are:
- Immunosuppressive cells and proteins in the microenvironment that can signal the engineered T cells to shut down or ignore tumors. Existing checkpoint inhibitor drugs could circumvent this problem, Anderson said, and the Fred Hutch team is also exploring engineering the therapeutic T cells to block those immunosuppressive signals.
- A “death signal” produced by both ovarian tumor cells and nearby blood vessels on their surfaces. This molecular signal causes T cells heading to the tumor from the bloodstream to commit suicide before they can fight the cancer. Dr. Shannon Oda in the Greenberg lab is working on a new type of fusion protein the engineered T cells will carry that will rewire their internal circuitry to instead boost their anti-tumor activity in response to the death signal.
- The tumors’ low-sugar environment. Fast-growing ovarian cancer cells churn through the glucose in their environment — the same energy source engineered T cells need to do their work. Researchers in the Greenberg lab are working to re-engineer the therapeutic T cells to process other sources of energy.
Although her current work focuses on ovarian cancer, a particularly difficult-to-treat solid tumor, Anderson hopes the work will shed light on new therapeutic avenues for other solid tumors as well.
“If we can solve some of the issues that really plague us with these hard ones, then we can more readily apply [the solutions] to cancers that have fewer of these hurdles,” she said.
The researchers are hoping to launch a clinical trial of the engineered T cells for patients with ovarian cancer in the next few years, Anderson said.
Paying it forward
For Anderson, the work is not just academic. Five years ago, while she was completing her doctorate research, Anderson was diagnosed with triple negative breast cancer when she was just 28. After her diagnosis, she learned she carried a mutation in the breast cancer–linked gene BRCA1, a mutation which also increases her risk for ovarian cancer.
An immunologist by training, Anderson’s own experience with cancer spurred her to look for research opportunities where she could one day have a direct impact on other cancer patients. She wasn’t particularly looking to study breast or ovarian cancer, she said, but she was very interested in the burgeoning field of immunotherapy. It seemed a prime research area where she could use her background to make a difference.
When Anderson met with Greenberg, who’s long been a leader in the field of T-cell therapy, to discuss research options for her postdoctoral fellowship, he proposed the ovarian cancer project to her. Anderson jumped at the chance.
“Someone did a lot of research to come up with the drug that got rid of my cancer. Part of the reason that I wanted to go into cancer therapy was so I could pay it forward and do that for someone else,” she said. “It just so happened coincidentally to be [a cancer] that is close to my heart.”