Inflammatory cell death sparks regeneration
Kinsella found that thymic regeneration has a gas pedal in addition to a brake. In mice, she used total body irradiation, or TBI (which is used to treat some blood cancers and tanks production of T cells), to study post-damage thymic regeneration. She found that after TBI, T cells died in a new way, switching from apoptosis to pyroptosis, a form of cell death that triggers inflammation.
“Apoptotic cells degenerate and shrink. Pyroptotic cells basically burst,” Kinsella said.
Many molecules spewed by pyroptotic cells act as damage signals to other nearby cells. One such molecule is ATP, a molecular form of energy that powers many cellular processes. Kinsella found that ATP activates surrounding cells to promote thymic regeneration. It appears to be the master signal that can activate the same response triggered by BMP-4 and IL-23.
When Kinsella and teammates dosed mice with ATP after TBI, their thymuses regenerated better than those of mice who’d undergone TBI without receiving ATP.
“But how do you translate that into a therapeutic, when you can’t administer ATP clinically?” she said.
Instead, Kinsella was able to pinpoint the receptors through which the thymus’s regeneration-promoting cells respond to ATP. The team identified a research compound that works through these receptors and found that it had a similar regeneration-boosting effect on the thymuses of irradiated mice as ATP.
‘The thymus matters’: Working toward the clinic
As a step toward moving the findings to the clinic, Kinsella and Dudakov have filed patent applications for systems and methods to boost thymic function by targeting this pathway.
And Dudakov is not done revealing the mysteries of the regenerating thymus.
His team is also testing whether the research compound may be able to counteract age-related thymic decline, which causes older people to be more vulnerable to infection and less responsive to vaccines. And he is working to test whether measures of thymic function could be used to predict how cancer patients are likely to respond to checkpoint inhibitors.
“This is part of our challenge, to make people aware that the thymus matters,” he said.
This work was funded by the National Cancer Institute, the National Heart, Lung, and Blood Institute, the National Institute on Aging, a Scholar Award
from the American Society of Hematology, a John Hansen Research Grant from DKMS and a New Investigator Award from the American Society for Transplantation and Cellular Immunotherapy.
Note: Scientists at Fred Hutch played a role in developing these discoveries, and Fred Hutch and certain of its scientists may benefit financially from this work in the future.