Easier and less invasive
Janet Freeman-Daily, a Seattle-area metastatic NSCLC patient advocate who works with Hutch SPORE researchers, said she’s very familiar with the test and is encouraged the bronchoscope is being repurposed to become a less-invasive biopsy.
“It’s always better if you’re not poking holes in people,” said the 64-year-old former rocket scientist and co-founder of TheROS1ders, a lung cancer patient advocacy group for patients with ROS1 mutations. “Two days after they found a mass in my lungs in 2011, I had a bronchoscopy. And I’ve had two since then.”
Freeman-Daily was anesthetized during her three procedures — “They give you the same drug as with a colonoscopy” — and said she suffered no long-term side effects.
“Sometimes they go in looking for irregular cells that could be cancer,” she said. “Lavage is when they put the liquid down. I had obstructive pneumonia and they used a bronchoscope to make it easier for me to breathe. They’re used for more than one thing.”
Nair hopes they can also be used to answer questions about the molecular makeup, and exploitable vulnerabilities, of lung cancers.
“Lung cancer biopsies require a lot of skill,” he said. “But bronchoalveolar lavage is very easy to do and it’s very safe. You put a scope into the airway, inject saline, let it hang out for a few seconds and then aspirate it and send it off to the lab. We can use it to find or rule out infections or look at cells in the lung or get cancer cells. It’s a fundamental tool that we use to assess the lung environment.”
Nair believes there’s potential for much more — and this grant will allow him to dig in.
“We want to start understanding how we can use this fluid by analyzing the molecular characteristics,” he said. “And there are also lots of different variables that can affect how much of this fluid we can get, how useful it will be, and how accurate it will be.”
It’s still early days yet, but the grant will help build the infrastructure to study its clinical utility.
“We’re looking at the fluid for genomic analysis and the T cells within it for cellular analysis,” Nair said. Researchers will first optimize the cells that are collected and then develop assays “to really understand what’s happening at the tumor level.”
“We’re lavaging the macroenvironment of the tumor,” he said. “And it reflects what’s happening in the microenvironment of the tumor itself. But to what degree? That’s what we’re trying to find out.”
Funding for the Lung-MAP study was provided by the National Cancer Institute and by AbbVie, Amgen, AstraZeneca, Bristol Myers Squibb, Genentech and Pfizer through the Foundation for the National Institutes of Health, in partnership with Friends of Cancer Research. The BAL fluid biopsy grant was awarded by the National Cancer Institute.