“These results demonstrate the value of metagenomic analysis in the monitoring and response to this and future viral pandemics,” wrote the researchers, led by Fred Hutch virologist Dr. Keith Jerome, who also heads the Virology Division at UW, and Dr. Alex Greninger, assistant director of the UW Medicine Clinical Virology Laboratory.
Greninger noted that one reason these screens are so computationally intensive is that the genetic information pulled from the nasal swabs, which are capable of generating a billion snippets of code, must be matched against a vast database of more than 200 million known gene sequences from the vast range of microbial life archived by global researchers to date.
Services such as AWS can help researchers queue up their data and run analysis in a few hours that might otherwise take weeks.
“We’re starting to get to the point where we can almost sample all the molecules in a given sample,” he said. “The sequences are getting bigger and bigger, and the databases are getting bigger and bigger. That’s why cloud computing is so important.”
Putting clinical, viral and genetic data together
Elsewhere at Fred Hutch, researchers are using metagenomic sequencing to study how protein structures on the surfaces of infection-fighting blood cells might determine why some 20% of COVID-19 patients experience severe disease, while the rest do not.
“We have already completed the collection of sequences from 1,032 patients, half of them with severe COVID-19, and half without severe disease,” said Dr. Lue Ping Zhao, who is leading the project.
The focus of Zhao’s study is on a set of immune system genes called HLA Class II on the surfaces of T cells — the same gene that's profiled and matched so that donated immune cells are compatible with the tissue-type of transplant patients. Researchers want to know if HLA genes may recognize and present viral antigens for the immune system to respond to, and if an overactive immune response might lead to the powerful inflammatory response, known as a “cytokine storm,” that is a common cause of death in severely ill patients.
“Through this interdisciplinary collaboration, we are now putting clinical, viral and genetic data together through a statistical analysis to see which HLA genetic elements might be predictive of severe COVID-19,” Zhao said.
These early experiments are demonstrating how advances in metagenomic sequencing empower researchers by giving them a clearer, comparative view of the many mechanisms that control our biology and provide new ways to detect and treat disease.