Hutch researchers led by Bloom have developed an experimental assay that allows researchers who don’t have access to the highest biosafety-level laboratories to safely measure antibody neutralization of SARS-CoV-2. The test measures how well the antibodies perform against a harmless virus that has been genetically engineered to carry SARS-CoV-2 spikes, so it mimics the real virus. This “pseudovirus” can be used to test COVID-19 vaccines or antibody therapies in a lab setting without having to use the dangerous wild virus, which can only be tested in highly secure facilities.
That test was crucial for another Hutch team, led by immunologist Dr. Leo Stamatatos, in their studies of antibodies that bind to the distinctive spike on the coronavirus surface, a likely target of vaccines and therapies.
In the journal Immunity, Stamatatos and colleagues describe how they identified from the blood of a COVID-19 survivor an extremely potent neutralizing antibody that can block the ability of the virus to lock onto vulnerable cells thought to be its primary target inside the human lung.
The antibody fit so snugly to a spot on top of the SARS-CoV-2 spike that it stopped infection 100% of the time using Bloom’s laboratory tests.
“Because it neutralized every viral particle in our assay, it is theoretically a good candidate for a COVID-19 therapy or a vaccine,” Stamatatos said.
His team embarked with University of Washington researchers in early March on the effort to identify natural antibody defenses against SARS-CoV-2 shortly after obtaining the precious blood sample from a patient who had recovered from COVID-19.
They developed a test to isolate antibodies that this one patient had naturally developed against the coronavirus and identified 45 different varieties that latched onto one site or another on the knobbly protein surface of the spike. Of these, only three had any ability to block infection.
A top performer
The one antibody that seemed to have hit the bullseye was measured to be 530 times more potent than its nearest competitors: two others that homed in on different parts of the coronavirus spike but only weakly blocked infection.
The top performer, labeled CV30, was extraordinarily good at stopping infection, likely because it locked so securely onto a region at the tip of the spike called the receptor binding domain. That is the same site that has been so problematic for humans, because it connects the top of that spike, like a key fitting into a lock, with a receptor called ACE2 found of the surface of cells that line the deepest recesses of the human lung.
ACE2 acts like a trap door that allows the coronavirus to break into those cells and use its internal genetic machinery to make thousands of new copies of SARS-CoV-2, eventually killing those cells.
Could this antibody, by itself, be key to stopping the pandemic? Stamatatos said very likely no, because the virus would eventually escape through mutation of that closely matched site on its spike. Consequently, researchers are hoping to develop a cocktail of many different neutralizing antibodies.
“Ideally, a cocktail would presumably be better, because the virus has less chance to escape,” said study co-author Dr. Andrew McGuire, whose lab performed the genetic sequencing of the antibodies and carried out the neutralization studies using Bloom’s pseudovirus test.
Stamatatos and colleagues are now exploring whether the neutralizing antibodies isolated using these techniques could be formulated into a therapeutic infusion that could protect frontline workers from infection, or as a treatment to limit viral replication in an already infected patient.
The structure of the most successful antibodies can also inform research on a vaccine, which would be designed to teach a healthy individual’s immune system to generate similar protective proteins if exposed to SARS-CoV-2, blocking infection.
Meanwhile, McGuire has been working on neutralizing antibodies against coronaviruses for several years in a collaboration with biochemist Dr. David Veesler of the University of Washington. Predating COVID-19, the work was initially aimed at SARS and MERS, two deadly epidemics — discovered in 2003 and 2012, respectively — caused by coronavirus cousins of SARS-CoV-2.
That gave the researchers a jump start on describing the structure of the SARS-CoV-2 spike, and Veesler and McGuire were co-authors of one of the first papers to describe it.
The team hopes to identify an antibody that neutralizes all three types of the deadly coronavirus, which could be developed into an antibody-based therapeutic to treat infection by any one of these coronavirus threats.