Ghajar and Riddell, who is an immunotherapy researcher and SCCA oncologist, will work with Dr. David Baker, director of UW’s Institute for Protein Design; Hutch clinical researcher Dr. Amanda Paulovich; Hutch immunologist Dr. Mark Headley; Hutch biostatistician Dr. Ted Gooley and translational researchers Drs. Shivani Srivastava, Erica Goddard and Candice Grzelak of the Hutch.
“We’re also very lucky to work with two wonderful breast cancer patient advocates, Teri Pollastro and Rebecca Seago-Coyle,” Ghajar said.
Targeting the drivers of late-onset metastasis
Ghajar’s research, along with that of his postdoctoral researchers Goddard and Grzelak, focuses on disseminated tumor cells, or DTCs, the tumor cells that can lie dormant in breast cancer patients for years or decades after treatment for early stage disease before emerging as metastasis.
DTCs spread early, sometimes even before tumors are formed, and they commonly hide out in a dormant state within the bone marrow. When these DTCs “wake up” years later (not all do), they spread throughout the body, sowing tumors in metastatic breast cancer patients’ brain, bones, lungs, liver or other sites. Metastatic, or stage 4 disease, is treatable but not curable. It’s what kills most breast cancer patients.
In previous research, Ghajar found that signals from tiny blood vessels in the bone marrow shield dormant DTCs from chemotherapy drugs. These dormant breast cancer cells are also able to hide from the body’s immune system by decreasing their production of HLA proteins, which are necessary to alert the immune system of danger.
No proteins. No natural immune response.
“Traditional means to enhance immune function that rely on T cells that are already present in the body, such as vaccines and checkpoint inhibitors, may be ineffective because DTCs are invisible to them,” Ghajar said.
What does this mean?
“It suggests we need to target DTCs based on something else that’s on their surface,” Ghajar said. The team’s ongoing work, identifying molecules on the surface of DTCs derived from human patients, will help inform this targeting.