“What’s great about having the two papers come out at the same time is that it immediately says this is not some one-off thing. It can be done with different lineages of B cells, and it should be possible for other viruses with difficult-to-make vaccines, such as dengue virus,” Taylor said.
A five-step evolutionary process
Having proven it is possible to find the right precursor cells and expand their numbers exponentially, the researchers are focused on developing the next series of shots, which are designed to drive the evolution of the precursor B cells to produce the desired super antibody.
“Let’s call it a five-step process. Step one is activating these precursor cells that have potential, then steps two through five are making them change to get them there,” Taylor said.
After activating the precursor cells, each shot in the proposed series will contain a different protein; each protein will be designed to stimulate the prior generation of B cells to produce a new crop with genetic changes that make antibodies looking more and more like VRC01 or another desired super antibody.
“As they accumulate mutations, they become better and better at neutralizing HIV,” Stamatatos said.
The first shot in the series would contain the tiny protein “bait” to generate a large population of precursor B cells. Hutch researchers have already designed a series of immune proteins for subsequent shots meant to guide the evolution of B cells toward production of HIV-blocking broadly neutralizing antibodies. They are now in the process of testing them in mice. “Those mice studies are happening now, and we expect results in the next six to 12 months,” Stamatatos said.
The result, if these studies succeed, would be a candidate vaccine that might consist of four to five different shots, each with different ingredients which, in sequence, lead to the production of broadly neutralizing antibodies — a vaccine that could eventually be tested in humans.