Nanoparticles reprogram macrophages to kill cancer
Stephan began his career fascinated by the potential power of using the immune system against cancer. He turned to nanobiology to make immunotherapy quick, cheap and accessible to as many patients as possible. To that end, he has developed dissolving nanoparticles that can package genetic instructions to influence the function of cells still inside the body. Though so far only tested in animal models, he envisions using them to turn patients into their own immune cell-engineering laboratories.
“The nanoparticles are designed to be nonimmunogenic and not activate the immune system by themselves. They’re not designed to release a drug,” he noted. Instead, he said, “We’re programming the immune system from within.”
Stephan has used the nanoparticles to tweak the DNA of T cells, a different type of immune cell, inside mice. This time, he and Dr. Fan Zhang, a postdoctoral fellow on his team who spearheaded the work, used molecules of synthetic messenger RNA, or mRNA. Our cells use mRNA as an instruction manual for building proteins. The mRNA in Stephan and Zhang’s nanoparticles carries instructions for building two macrophage-stimulating proteins, which allows them to reprogram macrophages without touching their DNA. The researchers studded the nanoparticles with molecules that target the nanoparticles to macrophages, which easily ingest the nanoparticles.
Zhang, Stephan and the team tested the strategy in mice with ovarian cancer, skin cancer and brain cancer. In the mice with ovarian cancer, they delivered the nanoparticles once a week for nine weeks via a catheter into the area that surrounds the abdominal organs. This is the same way that chemotherapy is delivered to human ovarian cancer patients.
The scientists saw that tumors cleared completely in 40% of mice that received macrophage-targeting nanoparticles. Mice in this group lived an average of 142 days, more than twice as long as mice that received empty nanoparticles, which lived an average of 60 days. Inflammatory macrophages increased in mice treated with mRNA-carrying nanoparticles. In addition, more T cells, which can also kill off cancer cells, entered their tumors.
Stephan and Zhang repeated the approach in mice with glioblastoma, a type of brain cancer, and metastatic melanoma, a type of skin cancer that has spread through the body. By infusing the nanoparticles intravenously three times a week for three weeks, they were able to similarly extend survival for mice with these types of cancer.
The findings show that the nanoparticles are heading off immature macrophages before they reach the tumor, Stephan said: “We are targeting these cells that the tumor wants to recruit and we make sure that they don't turn into suppressor cells, but they turn into the exact opposite.”
His team was able to show that nanoparticles carrying mRNA encoding human proteins could also reprogram macrophages, a first step toward an in-human trial of the approach. Nanoparticle infusion also appeared to cause little or no widespread toxicities in the treated mice.
Bringing immune-reprogramming nanoparticles to patients
Tidal Therapeutics is taking on the challenge of producing the nanoparticles in large amounts and as a shelf-stable product.
The next step, Stephan hopes, is the initial ovarian cancer trial, which would enroll patients whose cancers have resisted other forms of treatment.
“It's not a therapy that is supposed to be given for the rest of the patient's life,” he explained.
The nanoparticles are also not designed to compete with chemotherapy, which is an effective first step for many patients. Relapse rates vary depending on cancer stage at diagnosis, but in about 70% of patients, tumors recur. Stephan hopes that his nanoparticles can help address these patients’ need for more therapies. And though the macrophage-programming nanoparticles will initially be tested alone, he envisions them working in concert with standard cancer immunotherapies.
“My expectation is that we can prolong the survival of these patients [with ovarian cancer] without any additional side effects,” Stephan said. “It’s a therapy that is designed to be selective and not destructive.”