That means therapies and drugs developed on the basis of those variants will most likely work best in people who share that same ancestry. And polygenic risk scores, used to compute our genetic risk for cardiovascular disease, diabetes, sickle cell anemia, cancer and other diseases, are less valuable — and less accurate — for large swaths of the population.
“Commercial DNA tests will tell you what your risk is for heart disease, ingrown toenails, or whatever, but those risk scores are based on the results from people of European descent,” said Dr. Charles Kooperberg, head of the Hutch’s Biostatistics Program and another senior author. “So the predictions are much more accurate for Europeans.”
Even more worrisome: That bias is now baked into the system and could harm even more people by exacerbating existing disease and health care disparities.
“Even though there’s a shared biology, the current models are imprecise,” said Hutch staff scientist Stephanie Bien, who also worked on the study. “And they’re more imprecise if you’re not of European ancestry. You have to study all populations to see things that are relevant in all populations.”
Completing the PAGE
Established a decade ago and funded by the National Institutes of Health’s National Human Genome Research Institute, the PAGE consortium pools large groups of study participants to extract high-powered findings regarding our “epidemiological architecture,” that is, who is more prone to what disease or health issue, or who might be protected from it, because of their unique genetic makeup.
PAGE used groups from a handful of large studies for this analysis, including the Women’s Health Initiative; the Hispanic Community Health Study / Study of Latinos (HCHS/SOL); the California- and Hawaii-sourced Multiethnic Cohort (MEC) and the BioMe™ BioBank.
All told, the group represented 22,216 self-identified Hispanic/Latinos; 17,299 African Americans; 4,680 Asians; 3,940 Native Hawaiians; 652 Native Americans and 1,052 individuals who self-identified as Other.
The PAGE team ran a GWAS of 26 separate clinical and behavioral phenotypes, or traits, within their 50,000 multi-ethnic participants to see how each person’s genetic ancestry affected each one. The traits included everything from height to waist-to-hip ratio to fasting insulin level to white blood cell count to high- or low-density lipoprotein (aka HDL and LDL) to coffee consumption.
Using a tool they’d created known as a Multi-Ethnic Genotyping Array (MEGA), the researchers were able to gain a deeper biological understanding of the genetic underpinning of many complex diseases, including diabetes, stroke, obesity, and cardiovascular disease. They also created a blueprint for analyzing genetic associations in diverse populations moving forward and identified 27 new trait-variant associations.
“As we anticipated, by examining previously underrepresented populations, we found new ancestry-specific associations, which furthers our understanding of the genetic architecture of traits and underscores the importance of including diverse populations in these studies,” Peters said.