Defining the functional epitope
No broadly neutralizing antibody can block all variants of HIV. To cover their bases, the researchers chose to test the evasion of nine well-characterized broadly neutralizing antibodies.
Using his method, Dingens outlined each antibody’s functional epitope, defined as the site where mutation allowed the viruses to escape neutralizing antibodies and infect cells. The team was also able to learn which regions of the structural epitope contribute the most to each antibody’s ability to block HIV.
“The fact that he could do it for all the main classes of antibodies is a bonus,” Overbaugh said. “They’re all heavily studied, to the point it was surprising there was so much information to add in one study.”
As HIV evolves to dodge broadly neutralizing antibodies, it builds up mutations — but without functional information, it’s not always clear which mutations are affecting virus escape.
“The findings could be very useful,” Bloom said. “When you look at a viral genetic sequence, you want to actually know what a mutation does.”
The team also gained important insights about an HIV mutation that researchers have already seen in a clinical trial of broadly neutralizing antibodies. Using the atlas, they singled out a specific mutation, outside the antibody’s structural epitope, as a key stop on the virus’ path to escape.
A guide to blocking HIV’s escape routes
Assessing the importance of mutations seen in clinical trials is just the beginning, Bloom said. The researchers hope that deep mutational scanning, and the atlases of functional epitopes it will allow scientists to build, will help guide virologists by enabling them to think beyond the structural epitope.
The findings suggest that as scientists choose antibodies to develop as therapeutics, they should take into account how easily viruses could mutate to escape a specific antibody, Dingens said.
The data from this study will be immediately applicable for this purpose, Overbaugh said. Understanding potential overlap between functional epitopes will help them pick the right combination of antibodies that block all of HIV’s exit routes.
Researchers studying other viruses, including influenza, also seek out broadly neutralizing antibodies and the clues they hold for understanding viruses’ vulnerabilities. The current work suggests a totally different way to map viral epitopes of newly discovered broadly neutralizing antibodies, Overbaugh said. Instead of working backward from a new antibody’s structure, scientists will learn more direct information by performing deep mutational scanning to chart its functional epitope, she said.
Next steps
Dingens' strategy could be applied to viruses beyond HIV, said Bloom. Influenza is another virus for which researchers are hoping to design a broadly neutralizing antibody–triggering vaccine. A deeper understanding of the functional epitopes of already characterized antibodies against the virus would aid that quest.
Bloom also noted that the enormous variability in both HIV and antibodies means that there’s a much larger landscape of functional epitopes and HIV-escape mutations that has yet to be charted. For example, in order to map the functional epitopes of more antibodies, a collection of libraries covering more HIV strains must be created, Overbaugh said.
“The atlas allows us to better understand the relationship between structure and function,” Dingens said. “It opens the door.”