The Gleason test gets tested
In her latest paper, published in June in the journal Prostate, her team compared the panel of aberrantly methylated DNA sites (known as CpGs) with the Gleason score determined using tumor tissue removed at surgery.
They found their panel to be better at predicting deadly prostate cancers than the standard method. The team developed a DNA methylation score based on the Gleason score plus five validated biomarkers — CpG sites whose methylation tends to be different in aggressive prostate cancers than in less-aggressive tumors.
“We’re getting a much higher, significant improvement in the ability to predict disease aggressiveness at higher sensitivity using our DNA methylation score than what Gleason alone would give you,” said Stanford. “It’s looking like it’s going to be a better test for stratifying patients with potentially lethal tumors.”
According to their research, over 25 percent of the patients in their validation study (six men) had been misclassified as low risk using Gleason score alone.
As Stanford put it in her paper, a combined test could be “particularly relevant for those patients who may be misclassified as low risk based on Gleason alone and forego potentially lifesaving adjuvant treatment.”
Novel tests on the horizon?
Currently, there are no DNA methylation biomarker tests available to predict disease aggressiveness. There are a handful of gene expression tests, she said, some of which have received FDA approval, but, “they’re not perfect, and there is room for improvement.”
Stanford, who’s been focused on prostate cancer research ever since her father was diagnosed with the disease 25 years ago, is currently writing up results of her team’s validation analysis of their mRNA biomarkers to devise a novel gene expression score test, which she said would be “simpler and less expensive” compared to currently available gene expression tests.
“Current mRNA panels have from 17 to over 40 different transcripts, but we’ve been able to get it down to four,” she said. “A test with four mRNAs should be cheaper to perform and easier to interpret than a test that measures many more.”
That could make such a test more widely available and used to help guide patient management.
Eventually, her team hopes to create a prognostic test incorporating all three categories of biomarkers for prostate cancer aggressiveness potential — germline or inherited single letter variations (SNPs); tumor gene expression (mRNAs); and tumor DNA methylation (CpGs) — to better identify, early on, those men more at risk for aggressive, life-threatening disease.
Fred Hutch, in fact, recently signed a licensing agreement with the China-based precision medicine firm Anchor Dx, to do just that.
“The idea is to combine different types of biomarkers under the theory that they may capture different aspects of disease biology better than a single type of biomarker,” she said.