Drawing on deep expertise
Galloway is just one of several world leaders in pathogen-associated cancers at the Hutch, said Clurman. Her peers in the field include Dr. Nina Salama, a renowned expert in H. pylori, the bacterium associated with ulcers and stomach cancer; and Dr. Edus “Hootie” Warren, an immunologist who researches Burkitt lymphoma, a cancer common in sub-Saharan Africa that is commonly linked to infection with Epstein-Barr virus, or EBV. Salama holds the Dr. Penny E. Petersen Memorial Chair and developed some of the first genomic tools to identify H. pylori strains most associated with stomach cancer.
Warren also heads Fred Hutch Global Oncology, which grew out of collaborations between Hutch researchers and Ugandan scientists examining the role of viruses such as Kaposi sarcoma herpesvirus, EBV, HPV and HIV in the development of cancer. In 2008, the scientific partnership was formalized in the UCI/Hutchinson Center Cancer Alliance.
For more than a decade, Hutch global oncology researchers have delved into the biology of pathogen-associated cancers and have become experts at assessing the barriers to providing cutting-edge cancer care in low-resource settings — and how to overcome them. The close connections between Fred Hutch Global Oncology and the Pathogen-Associated Malignancies IRC helps scientists identify which infectious agents and related cancers most impact human health around the world — that is, where opportunities exist for research to make the biggest difference for patients. Collaboration between these experts will also enhance their ability to test strategies for delivering new therapies, diagnostics and approaches to prevention.
Galloway and Hutch leaders also envision that the research conducted through the new center will inform and be informed by another area of Hutch strength: immunotherapy. Immunotherapy harnesses components of the immune system to fight cancer, and Hutch scientists have long been pioneers in the field, forging living therapies that are helping to save lives.
“Many of the ways that we initially deal with pathogen-associated cancers are likely to be through immunotherapeutic approaches,” Clurman said.
Fred Hutch launched its first IRC, dedicated to immunotherapy research and development, just last year. Understanding how the immune system responds to cancer-causing pathogens — and how they can circumvent its defenses — will improve immunotherapeutic approaches to treating cancer, including cancers caused by infections.
Technological advances have improved the speed at which scientists can pinpoint immunotherapy targets and develop new therapies based on those targets; viruses that persist in host cells may be uniquely vulnerable to this approach.
Merkel cell carcinoma is an ideal example of how a confluence of new technologies and progress in different fields of research can lead to lifesaving advances. In 2008, researchers capitalized on improved research tools to definitively link Merkel cell polyomavirus to Merkel cell carcinoma, or MCC, a particularly aggressive skin cancer. Since then, Galloway and Dr. Paul Nghiem, a world expert in MCC at the University of Washington and Fred Hutch, have developed a test to predict recurrence of the rare disease, and Nghiem helped pioneer the use of immunotherapy for patients with this cancer. The latter, a drug that helps unleash the immune system, earlier this year was approved by the Food and Drug Administration to treat MCC. Now Nghiem and colleagues at the Hutch are also exploring ways to use MCC patients’ own immune cells against their tumors.