DARE’s strategy: reservoir barriers, checkpoint inhibitors, and a CMV-vectored vaccine
In its first round of funding, DARE, led by Drs. Steven Deeks and Mike McCune of the University of California, San Francisco, focused on the role of the immune system, especially chronic inflammation, in establishing and maintaining the reservoir.
Under the second round, Deeks and his collaborators in Oregon, Australia, and elsewhere will continue studying the reservoir of latent cells and ways that the body’s own immune system can eradicate HIV once reawakened. Among their goals:
- UCSF researcher Dr. Timothy Henrich will look at how HIV circulates differently in blood and tissues and develop new ways to search for latently infected cells. At a Fred Hutch cure symposium in 2015, Henrich had likened finding latent HIV to finding Waldo in the children’s book, “Where’s Waldo.”
- Dr. Louis Picker, assistant director of the Oregon Health & Science University Vaccine and Gene Therapy Institute, will, in animal models, try to figure out the optimal combination of immunotherapies to reduce, eliminate or control the latent reservoir.
- Dr. Sharon Lewin of the Peter Doherty Institute for Infection and Immunity in Melbourne, Australia, will study checkpoint inhibitors — another anti-cancer immunotherapy — to see if they can shock, kill and control HIV in people with both HIV and cancer.
- And, Deeks will focus on developing a therapeutic vaccine using cytomegalovirus as a vector to provoke the immune system into responding.
The three new groups: BELIEVE, BEAT-HIV, and I4C
If the three original groups each took a distinct approach — with the understanding that a cure may likely require a combination of all three — the newly funded groups build on the most promising strategies from the first round, including cell and gene therapy and immunotherapies.
Based in Washington D.C., BELIEVE involves 18 public and private research institutes across the United States, Canada, Mexico, and Brazil, led by George Washington University researcher Dr. Douglas Nixon. At a November NIH cure conference, its researchers said they will focus on:
- An experimental drug developed to treat advanced tumors that also has been shown to not only “wake up” latent HIV but enhance the ability of the immune system to kill the awakened cells, thus both “kicking” and “killing.” Called ALT-803, the drug candidate was developed by Altor Bioscience Corporation, a BELIEVE partner, and is already in clinical trials for cancer.
- Nanoparticle “backpacks” developed by Torque, a biomedical engineering company and one of the group’s research partners, to deliver T cells that specialize in killing virus-infected cells.
The Philadelphia-based BEAT-HIV, co-led by Dr. Luis Montaner, director of the HIV Immunopathogenesis Laboratory at the Wistar Institute, and Dr. James L. Riley, research associate professor at the Perelman School of Medicine at the University of Pennsylvania, will focus on combination immunotherapy. At the NIH cure meeting, the two said that BEAT-HIV would:
- Identify where and how HIV hides by figuring out how to access new areas of the body that have not been studied before and finding a way to track infected cells.
- Combine two immunotherapy strategies that independently have been shown to reduce HIV: highly potent antibodies and pegylated interferon alpha 2b, a drug used to treat hepatitis C and melanoma.
- Combine two promising gene therapies that have been independently tested in humans, similar to one of the approaches under study by defeatHIV. The plan is to engineer CAR T cells to target HIV while also engineering them to resist attack by HIV.
And the sixth group, called I4C or Immunotherapy for a Cure, is led by Dr. Dan Barouch, director of the Center for Virology and Vaccine Research at Beth Israel Deaconess Medical Center in Boston. The focus is on creating a vaccine that can both prevent or cure HIV, building on separate vaccines developed by Barouch and by Oregon’s Picker, who also works with DARE. (A number of institutions and individual researchers work with more than one group.)
What ‘cure’ means — and why it matters
Scientists continue to tease out how, exactly, the transplant cured Brown — including whether the gene mutation or some other factor made the difference. Meanwhile, several attempts to replicate his cure, with and without an HIV-resistant donor, have failed to show the same results.
Why pursue a cure when combination antiretroviral therapy keeps the virus in check? As Fred Hutch’s Kiem recently explained, as much as treatment has done to allow people with HIV to live a near-normal life span, it does not fully restore health. Physicians who treat those on long-term therapy see accelerated aging, cardiovascular problems, bone loss, kidney disease, and higher cancer risks, much of it due to higher levels of inflammation that persist despite treatment. And although the drugs are becoming more available in low-income countries, almost half of those with HIV aren’t on treatment. Even in the United States, fewer than half of those diagnosed with HIV are on regular enough treatment to keep the virus suppressed, according to the U.S. Centers for Disease Control and Prevention.
But treatment matters, even beyond extending life and limiting transmission now. Researchers over the past five years have learned that if cures or remissions are to be achieved, they will probably come easier for people whose immune systems are healthiest and who have lower levels of the virus to begin with — which early and consistent use of antiretroviral therapy can achieve.
“Getting people on treatment is part of the cure agenda,” said UCSF’s Deeks at the international AIDS conference in Durban.
Many HIV researchers have set their sights on what they term “sustained virologic remission” as at least a first step toward a cure. If cure means eliminating the reservoir entirely, sustained remission means being able to control or contain the infection without antiretroviral therapy. At a minimum, HIV doesn’t rebound and isn’t transmittable to others. (In a very small subset of people with HIV, the immune system does just that; called elite controllers, they are heavily studied by researchers.)
“The biggest regret at this point is we don’t have a second cure,” said Fred Hutch's Jerome. “We’ve tried to be open and honest that this is going to be a long road. At the same time, we’ve learned a tremendous amount about the virus, the reservoir, the challenges that we face, and a lot of what we’re learning is coming out of the collaboratories. As a field, we have a better sense of what are the most promising strategies.”
Join the conversation about an HIV cure on our Facebook page. Learn more about HIV/AIDS research at Fred Hutch.