Dark horses and reducing side effects
Stoddard, Seattle Children’s researcher Dr. Andrew Scharenberg and Dr. Jordan Jarjour, at the time a University of Washington graduate student working in Scherenberg’s lab, engineered megaTALs, yet another gene-editing protein on the scene.
“MegaTALs are sort of the dark horse in the race right now. They don’t get as much press as the other platforms,” Peterson said.
Crafted from a fusion of a TALEN DNA-binding platform and a fungal DNA-cutting enzyme, megaTALs’ potential for clinical impact comes from their small size and particularly high specificity for their gene target. The proteins recognize a piece of DNA that’s much longer than those targeted by other gene-editing platforms, Stoddard said. That’s important because there’s less of a chance that long target sequence would randomly exist elsewhere in the genome than the spot gene researchers want to snip — what’s known as “off-target effects,” where the nucleases cut extra DNA.
MegaTALs are now being developed for clinical use by the Cambridge, Massachusetts, biotech company bluebird bio in collaboration with Stoddard and Scharenberg. Stoddard thinks their technologies should be ready for clinical trials in the next few years.
That balance between specificity (cutting only where you want to cut and not elsewhere) and efficiency (cutting as close to all of the target DNA as possible) is what will ultimately make any of these gene-editing platforms clinically useful. Right now, researchers have looked for spots elsewhere in the genome they think the nucleases might cut — and many approaches, such as the zinc-finger nucleases with which Peterson works, show no detectable snipping outside the desired gene target.
And, of course, there are the early clinical trials showing that some of these proteins don’t seem to have any noticeable side effects. But Peterson thinks that sequencing the entire genome will be the next step to ensure these techniques are truly safe.
“There could be cutting in places we never imagine for reasons we never imagine,” he said. “Having as extensive an off-target profile as possible is going to be a very important part of permitting any nuclease therapy to go into people.”
As much as researchers may have their gene-editing tactic of choice, what really matters is the end result, Peterson said.
“Being able to show they’re working to treat diseases and make a meaningful impact in patients with those diseases — that’s more important than what the platform is,” he said.