When identical is not identical
Think of it as nature, nurture or neither. That third, "neither," aspect might be due, for example, to “random collisions of molecules,” Brent said, and researchers have only recently begun to appreciate that such variation among identical creatures exists, let alone understand why it happens or what its consequences are.
Random chance may explain why identical twins raised together might end up with differences in physical strength or life span, or why genetically indistinguishable mice raised under the same laboratory conditions can have different amounts of hair, variable sized organs, or even different chances of getting cancer.
Mendenhall is interested in how those variations affect an animal’s longevity. In a previous fellowship at the University of Colorado Boulder, he studied how roundworms age. It’s long been appreciated that identical worms raised in the same petri dish in the lab can have very different life spans, Mendenhall said, but the reason for that variation was not understood.
Mendenhall found that identical animals activate their genes differently — and those that are better at turning genes on overall tend to live longer. That was an interesting finding, but to explore it further he needed a research tool that didn’t yet exist: the ability to track how genes behave in worms’ cells over their entire lifetime.
“We want to observe the living system as it is, intact,” Mendenhall said.
So he joined Brent, who previously developed the tools and concepts to look at differences in gene activity in single-celled yeast, to attack that technical challenge. Perfecting the microscopy, genetic and statistical aspects of their technique took several years, but now that the method is up and running, the researchers are excited to see what they can learn about why and how animals age.
“Only now do we have the tools and the capability to understand this third kind of variation inside an animal's cells,” Mendenhall said. “We get to measure what’s going on while it’s going on.”