To unearth new therapeutic possibilities for these cancers, Méndez teamed up with Fred Hutch colleagues Drs. Christopher Kemp and Carla Grandori to use a technique they honed over the past few years. Termed “functional genomics,” the technique screens through hundreds or thousands of genes to look for those which, when shut off, halt the growth of tumor cells but not healthy cells.
The scientists are also using the technology in larger screens to look for more drug targets in head and neck, breast and pancreatic cancer, thanks to a recent $4 million award from the National Cancer Institute to Kemp, Grandori, Méndez and Fred Hutch breast cancer researcher Dr. V.K. Gadi.
The genes they find are considered tantalizing candidates for new drug discovery -- or existing drug discovery, in the case of Méndez and Kemp’s study. The screen yielded 38 potential drug targets for p53-mutant head and neck cancers. One of those genes, Wee1, turned out to be a target of the cancer drug AZD1775, which is owned by the pharmaceutical company AstraZeneca. Although not yet approved by the Food and Drug Administration for cancer treatment, AZD1775 is being tested for various cancer types, including ovarian and pancreatic cancers.
The researchers tested the drug in a mouse model of p53-mutant head and neck cancer, and “the results were remarkable,” Méndez said. AZD1775 slowed tumor growth and, most important for its potential value to patients, synergized with chemotherapy to shrink tumors even further. Méndez and colleagues hope that AZD1775 could be used to sensitize head and neck cancer patients to cisplatin, a powerful but toxic chemotherapy drug.
Regimens using cisplatin to shrink tumors before surgery are often too toxic for patients, meaning some head and neck cancer patients are missing out on a way to improve their chances to remove all traces of their tumor or lessen the impact of surgery. If the new drug works as the researchers project, it would allow clinicians to dose head and neck cancer patients with very small amounts of cisplatin, reducing chemotherapy’s damaging side effects while still shrinking tumors before surgery.
‘Research and patients are intertwined’
Méndez’s team, in collaboration with Fred Hutch head and neck cancer oncologist Dr. Laura Chow and SCCA’s head and neck medical oncology team, this fall will launch an early-phase clinical trial of AZD1775 funded by AstraZeneca and the Fred Hutchinson/University of Washington Cancer Consortium. They plan to enroll up to 20 patients with locally advanced head and neck cancers, with or without the p53 mutation, and they will test whether the Wee1-targeting drug in combination with cisplatin can shrink patients’ tumors enough to improve their chances of successful surgery to remove their tumors entirely.
As part of that study, with support from Fred Hutch’s Solid Tumor Translational Research Program, the researchers also will use a mouse model of head and neck cancer personalized to each participant’s tumor to better understand the molecular changes that underlie response or resistance to the novel drug.
The researchers are the first to test AZD1775 prior to surgery for head and neck cancer, and if the trial is successful, patients with head and neck cancer not currently eligible for surgery who receive this treatment could have their tumors fully removed and still preserve their quality of life.
Partnering with Kemp and Grandori opened doors for his research, and its potential impact to his patients, that never would have been possible working alone, Méndez said.
“That’s why patients come here,” he said. “We’re offering very new and innovative therapies. Research and patients are intertwined.”
Related stories: