Derek Stirewalt, MD

/content/dam/www/faculty-photos/S/derek-stirewalt/derek-stirewalt.jpg
Dr. Derek Stirewalt MD
faculty member

Derek Stirewalt, MD

Professor, Translational Science and Therapeutics Division, Fred Hutch

Professor
Translational Science and Therapeutics Division, Fred Hutch

Fax: 206.667.1809
Mail Stop: D5-112

Dr. Derek Stirewalt studies the basic changes that occur in our blood stem cells as we age and their role in leukemia and other diseases. He uses cutting-edge technology to examine DNA, RNA and wide swaths of proteins to find new molecular calling cards as these diseases develop. Better understanding of the biological breakdown that leads to these diseases could lead to new tests for early detection and new therapies to halt or reverse them.

Other Appointments & Affiliations

Associate Professor, Division of Hematology and Oncology, University of Washington

Associate Professor, Division of Hematology and Oncology
University of Washington

Attending Physician, Fred Hutchinson Cancer Center

Attending Physician
Fred Hutchinson Cancer Center

Director, Fred Hutch/UW Hematopoietic Diseases Repository,

Director, Fred Hutch/UW Hematopoietic Diseases Repository

Director, Co-operative Center of Excellence in Hematology (CCEH) Hematopoietic Cell Procurement and Processing Services,

Director, Co-operative Center of Excellence in Hematology (CCEH) Hematopoietic Cell Procurement and Processing Services

Education

Oncology Fellowship, University of Washington, 1996-1999

Chief Resident, Internal Medicine, University of North Carolina Memorial Hospitals, 1995-1996

Resident, Internal Medicine, University of North Carolina Memorial Hospitals, 1993-1995

Intern, Internal Medicine, University of North Carolina Memorial Hospitals, 1992-1993

MD, University of North Carolina at Chapel Hill, 1992

BS, cum laude Pre-Med, Davidson College, 1988

Research Interests

The overall goals of Dr. Stirewalt’s research are to identify novel biomarkers for hematopoietic malignancies and to understand how these biomarkers may function to promote the development of diseases. Collectively, the purpose of this research is to improve the care of patients who are at risk for hematologic malignancies or who harbor these diseases.

Current Projects

Understand the Biology Driving Clinical Responses for Patients with FLT3 and NPM1 Mutations Dr. Stirewalt’s lab was one of the first to examine the clinical significance of FLT3 mutations in AML. This work led to the recognition of FLT3 internal tandem duplications (ITDs) and NPM1 mutations as two of the most clinically utilized prognostic factors for AML patients, especially those with normal cytogenetics. Subsequent studies from the lab have found that the biology and clinical significance of these mutations differ depending on specific characteristics of the mutation (i.e., mutation size, its location within the gene, allelic ratio, etc.), other cooperative molecular events (e.g., DNMT3A mutations), and age of the patient. Currently, our research projects investigating FLT3 and NPM1 focus on understanding the mechanisms driving the heterogeneous molecular biology and clinical significance of these mutations in AML. These studies are utilizing innovative technologies such as next generation sequencing, proteomics, and transfection/transduction models.

Identify Novel AML Prognostic Biomarkers and Therapeutic Targets Many AML patients do not harbor either NPM1 or FLIT3 mutations; therefore, there is a need for additional prognostic biomarkers to better risk-stratify these patients. To identify novel prognostic factors and potential therapeutic targets, we are examining differences in the global genomic and expression profiles between normal hematopoietic cells and AML blasts. Our previous studies have identified 13 genes with AML-specific expression changes, some of which may be novel prognostic factors and/or potential therapeutic targets, with several showing potential as novel adoptive immune targets. We are collaborating with other investigators to provide a more global assessment of the entire molecular landscape including protein expression and phosphorylation.

Understand the Role of Aging in the Development of Hematopoietic Malignancies As with most malignancies, the incidence of hematopoietic malignancies (AML, CML, MDS) increases with age, and as such, a better understanding of the molecular biology of the aging hematopoietic system may provide insight into hematopoietic transformation. Through previous NIH-supported studies, we identified a number of genes with age-related expression changes in normal hematopoietic progenitor/stem cells and AML blasts. Moreover, we and others have found that some of these age-related genes play critical roles in normal hematopoiesis and malignant transformation. Given the results from our previous work, we are expanding our studies of aging to include a larger cohort of normal and malignant samples and to examine an even broader spectrum of expression changes (e.g., proteomics, alternative splicing, microRNA).

Clinical Expertise

Dr. Stirewalt’s clinical expertise lies within the evaluation and treatment of patients with hematopoietic malignancies, with a particular interest in those patients with leukemia. He has been an active member of Fred Hutch’s transplant program for over 20 years and routinely oversees the care of patients receiving either an autologous or allogeneic transplant. He remains an active member of multiple local and national committees, which develop standards for the care of patients with hematopoietic malignancies, including the National Comprehensive Cancer Network (NCCN) Guideline Committee for Senior Adult Oncology.