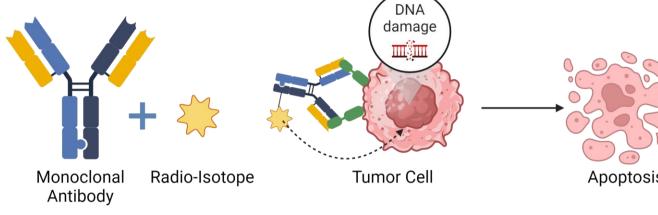
# Synergistic Enhancement of Anti-Leukemic Activity by Venetoclax & Radioimmunotherapy in Acute Myeloid Leukemia

Arnaz Maryam Tariq<sup>1,2</sup>, Olivia Midrigan<sup>1,3</sup>, Francesca Gaerlan<sup>1</sup>, Shannon Dexter<sup>1</sup>, Johnnie José Orozco<sup>1,3</sup>

<sup>1</sup>Fred Hutchinson Cancer Center, Seattle, WA; <sup>2</sup>University of Southern Mississippi, Hattiesburg, MS; <sup>3</sup>University of Washington, Seattle, WA

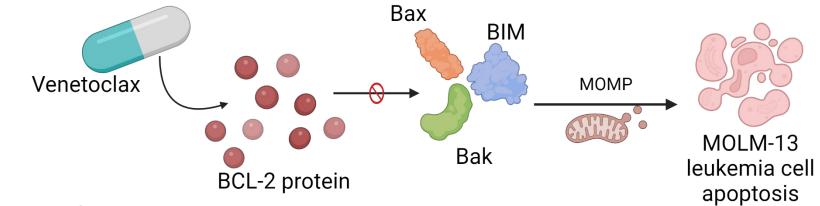

## Background

### Acute Myeloid Leukemia (AML):

- One of the most common & aggressive blood cancers in adults.
- Intensive chemotherapy can be the best chance for a cure, but is insufficient to eradicate AML and is associated with increased toxicity rates.

## **Radioimmunotherapy:**

- Therapy that links radioactive substances to antibodies to deliver radiation to the target and destroy cancer cells.
- Increased selectivity of radiation delivery and decreased off-target toxicity.




### Astatine-211 (<sup>211</sup>At):

- $\alpha$  emitter, with high linear energy transfer & around 1 to 2 cells range.
- Causes an overwhelming and irreparable DNA damage that triggers tumor cell death via apoptosis along the BCL-2 pathway.

## Venetoclax:

• Inhibits BCL-2 anti-apoptotic proteins, and facilitates apoptosis in tumor



### What next?

To overcome the inability in eradicating AML, novel therapies are needed such as radioimmunotherapy, and targeted therapy to enhance antileukemic effectiveness, and reduce off-target toxicity.

## Hypothesis & Objectives

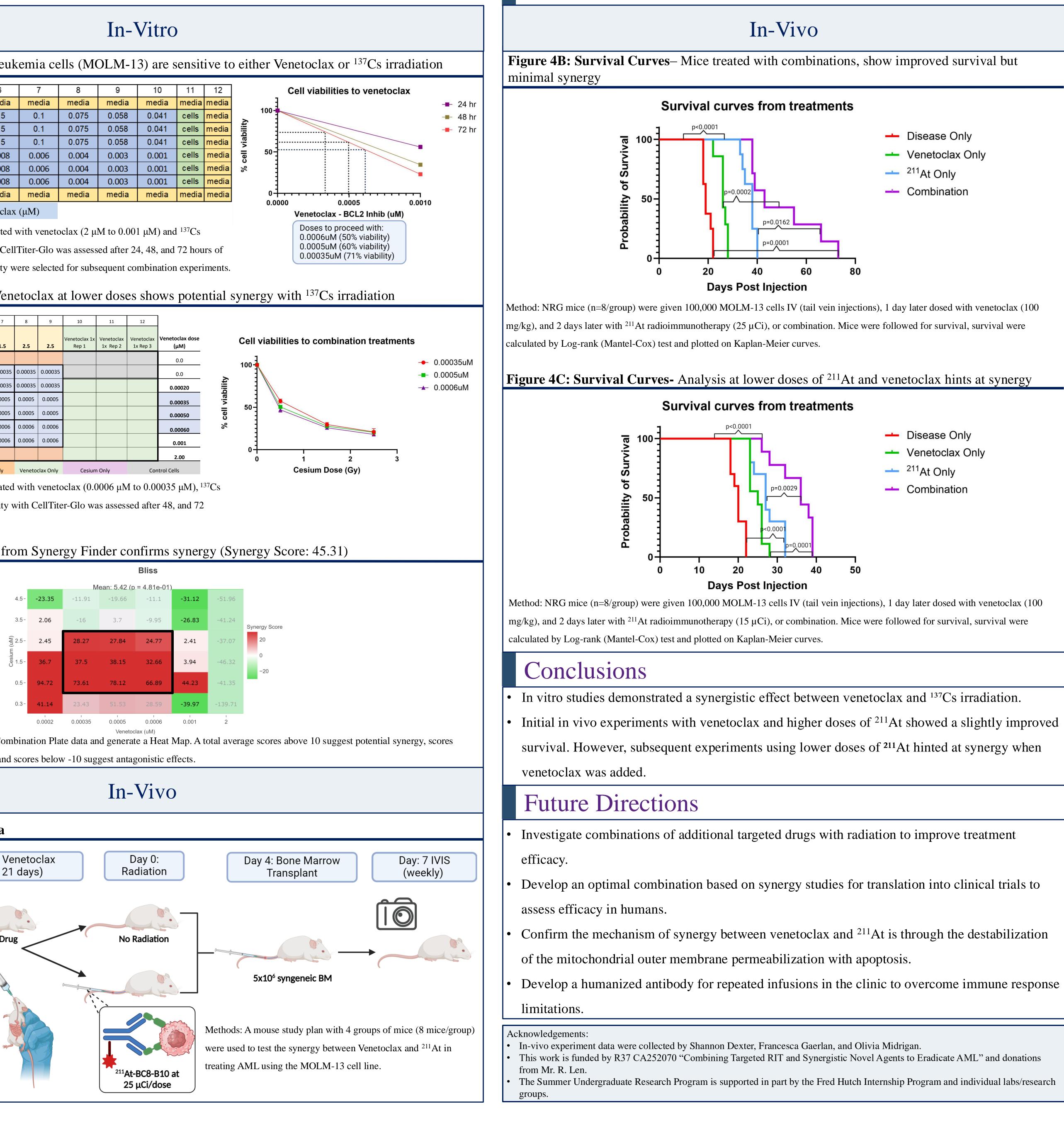
We hypothesize that the combination of venetoclax and radioimmunotherapy with <sup>211</sup>At will exhibit synergistic effects, leading to an improved survival in disseminated AML mouse models compared to single agents only. This project aims to assess the synergy between venetoclax and radioimmunotherapy with <sup>211</sup>At in treating AML using the MOLM-13 cell line model.

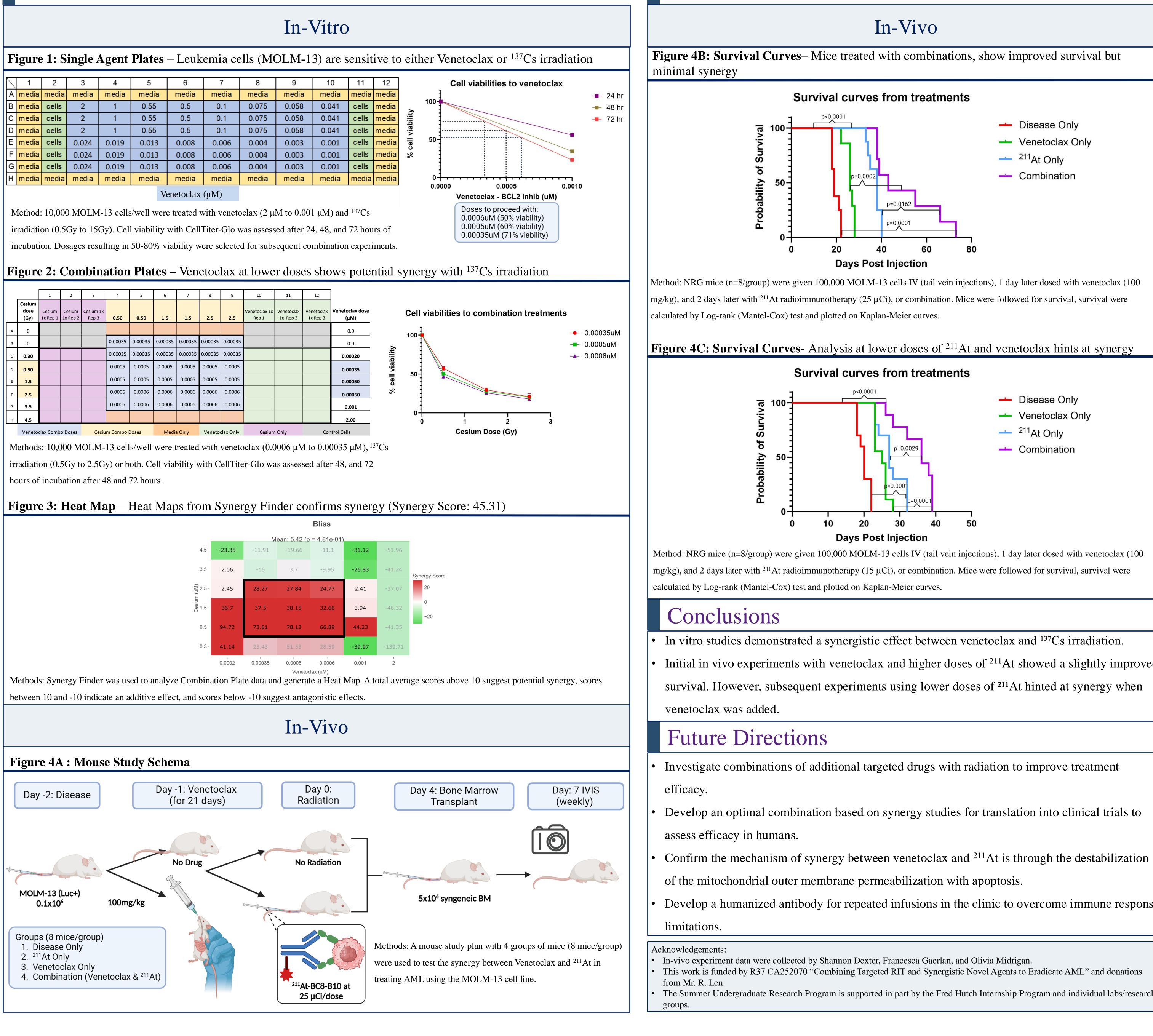
## In vitro studies:

Single Agent Plates: Asses the effects of venetoclax and <sup>137</sup>Cs irradiation on MOLM-13 cells to identify dosages yielding ~ 50-80% viability to move forward in combination plates.

**Combination Plates:** Asses for a potential synergy between venetoclax and <sup>137</sup>Cs irradiation.

In vivo studies:


To observe if venetoclax & <sup>211</sup>At combine synergistically in disseminated AML mouse models.


## Methods & Results



| $\left  \right $ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | Γ |
|------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|
| А                | media |   |
| В                | media | cells | 2     | 1     | 0.55  | 0.5   | 0.1   | 0.075 | 0.058 | 0.041 |   |
| С                | media | cells | 2     | 1     | 0.55  | 0.5   | 0.1   | 0.075 | 0.058 | 0.041 | ſ |
| D                | media | cells | 2     | 1     | 0.55  | 0.5   | 0.1   | 0.075 | 0.058 | 0.041 | ſ |
| Е                | media | cells | 0.024 | 0.019 | 0.013 | 0.008 | 0.006 | 0.004 | 0.003 | 0.001 |   |
| F                | media | cells | 0.024 | 0.019 | 0.013 | 0.008 | 0.006 | 0.004 | 0.003 | 0.001 |   |
| G                | media | cells | 0.024 | 0.019 | 0.013 | 0.008 | 0.006 | 0.004 | 0.003 | 0.001 |   |
| Н                | media | ſ |
|                  |       |       |       |       |       |       |       |       |       |       |   |

| L |   |                        |                    |                    |                    |         |         |         |         |         |         |                        |                        |                        | _             |
|---|---|------------------------|--------------------|--------------------|--------------------|---------|---------|---------|---------|---------|---------|------------------------|------------------------|------------------------|---------------|
| L |   |                        | 1                  | 2                  | 3                  | 4       | 5       | 6       | 7       | 8       | 9       | 10                     | 11                     | 12                     |               |
|   |   | Cesium<br>dose<br>(Gy) | Cesium<br>1x Rep 1 | Cesium<br>1x Rep 2 | Cesium 1x<br>Rep 3 | 0.50    | 0.50    | 1.5     | 1.5     | 2.5     | 2.5     | Venetoclax 1x<br>Rep 1 | Venetoclax<br>1x Rep 2 | Venetoclax<br>1x Rep 3 | Venetoc<br>(μ |
|   | A | 0                      |                    |                    |                    |         |         |         |         |         |         |                        |                        |                        | 0             |
|   | В | 0                      |                    |                    |                    | 0.00035 | 0.00035 | 0.00035 | 0.00035 | 0.00035 | 0.00035 |                        |                        |                        | 0             |
|   | с | 0.30                   |                    |                    |                    | 0.00035 | 0.00035 | 0.00035 | 0.00035 | 0.00035 | 0.00035 |                        |                        |                        | 0.00          |
|   | D | 0.50                   |                    |                    |                    | 0.0005  | 0.0005  | 0.0005  | 0.0005  | 0.0005  | 0.0005  |                        |                        |                        | 0.00          |
|   | E | 1.5                    |                    |                    |                    | 0.0005  | 0.0005  | 0.0005  | 0.0005  | 0.0005  | 0.0005  |                        |                        |                        | 0.00          |
|   | F | 2.5                    |                    |                    |                    | 0.0006  | 0.0006  | 0.0006  | 0.0006  | 0.0006  | 0.0006  |                        |                        |                        | 0.00          |
|   | G | 3.5                    |                    |                    |                    | 0.0006  | 0.0006  | 0.0006  | 0.0006  | 0.0006  | 0.0006  |                        |                        |                        | 0.0           |
|   | н | 4.5                    |                    |                    |                    |         |         |         |         |         |         |                        |                        |                        | 2.            |
| 1 |   |                        |                    |                    |                    |         |         |         |         |         |         |                        |                        | -                      |               |





